Berdasarkan hal tersebut, dapat dikembangkan berbagai berbagai bentuk fungsional model regresi. Bentuk pertama yang akan kita bahas dalam tulisan ini adalah Model Double-Log sebagai berikut:
Misalnya suatu model: Yi = β0Xiβ1eui
Model tersebut adalah terlihat tidak linear dalam parameter, tetapi secara intrinsik bisa dibuat linear dengan transformasi sebagai berikut:
lnYi = lnβ0 + β1lnXi + ui
ln = logaritma natural (logaritma dengan bilangan dasar e = 2,71828)
Jika α = lnβ0, Yi* = lnYi dan Xi* = lnXi , persamaan tersebut dapat ditulis kembali menjadi:
Yi* = α + β1Xi*+ ui
Model ini dinamakan dengan model double-log. Hal yang perlu diperhatikan dalam model double-log adalah, koefisien β1 dapat ditafsirkan sebagai elastisitas yaitu persentase perubahan variabel Y sebagai akibat persentase perubahan variabel X. Dengan demikian, jika X merupakan harga dan Y adalah permintaan, maka koefisien β1 dapat diinterpretasikan sebagai elastisitas harga.
Sebagai contoh, misalnya kita punya data selama tahun 1993 – 2008 mengenai harga suatu produk (X dalam ribuan rupiah) dan jumlah produksi (Y dalam ribuan unit) yang diasumsikan sebagai jumlah barang yang ditawarkan sebagai berikut:

Setelah data tersebut diinput di SPSS, langkah pertama kita adalah mentransformasi data kedalam nilai logaritma natural dengan cara: Klik Transform > Compute Variable. Akan muncul tampilan berikut:

Di kotak Target Variable isikan nama variabel untuk menampung hasil transformasi. Misalnya dalam contoh lnX untuk logaritma variabel X. Di kotak Numeric Expression tuliskan rumus berikut: LN(X). Kemudian klik OK.
Lakukan proses yang sama untuk variabel Y. Secara otomatis, dalam worksheet SPSS kita akan ditambahkan dua variabel baru yaitu LnX dan LnY.
Setelah itu klik Analyze > Regression > Linear. Akan muncul tampilan berikut:

Isikan pada Dependent dengan variabel lnY dan di independent dengan variabel lnX. Klik OK. Maka akan keluar output SPSS sebagai berikut:
Output SPSS tersebut dapat diringkas sebagai berikut:

Catatan: * signifikan pada α = 10%, ** signifikan pada α = 5 %, *** signifikan pada α = 1%
Nilai P-value pada koefisien lnXi lebih kecil dibandingkan nilai α = 1%. Artinya terdapat pengaruh yang sangat signifikan secara statistik antara harga dan penawaran. Selanjutnya koefisien dapat diinterpretasikan sebagai berikut: Untuk setiap peningkatan sebesar Rp 1 % dari harga, maka akan meningkatkan penawaran (produksi) sebesar 1,205 % (nilai koefisien lnXi). Dengan kata lain, elastisitas harga penawaran untuk produk ini adalah sebesar 1,205 (elastis).
Penjelasan lainnya dari angka-angka didalam output SPSS dan model regresi, silakan ikuti tulisan-tulisan sebelum ini.
Tidak ada komentar:
Posting Komentar